The Analysis of Stiffness for Rubbery Metallic Material Based on Mesoscopic Features

نویسندگان

  • Hong Zuo
  • Hongbai Bai
  • Yuhong Feng
چکیده

In this article, deformation and mechanical response of a rubbery metallic material were investigated. First, the mesoscopic structural properties of the material and its evolution during part producing were analyzed and described in detail. Then the inherence relationship between the macroscopic mechanical properties and mesoscopic structural characteristics were studied, in which the related mesoscopic structural characteristics were limited in the basic unit (mm) scale such as the radius of metal wire and unit coil, etc. Furthermore, according to the mesoscopic properties of the material, a curved beam unit based on the mesoscopic scale and shape factor was introduced to bridge the mechanical response and the mesoscopic parameters such as the beam orientation and spatial distribution. In the end, a mesoscopic stiffness model was proposed, from which the macroscopic mechanical properties of material could be deduced from the mesoscopic characteristic size, shape and the mechanical properties of base metallic material.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Energy Dissipation in Accordion Thin-Walled Tubes under Axial Cyclic Loads

Energy absorber systems like metallic dampers for controlling the structural vibrations due to earthquake have witnessed considerable development in the past few decades. Also there are some studies on the energy absorption of thin-walled tubes due to impact load. Thin-walled tubes have a large deformation capacity and are suitable energy absorbers in the structure during an earthquake provided...

متن کامل

Study of Energy Dissipation in Accordion Thin-Walled Tubes under Axial Cyclic Loads

Energy absorber systems like metallic dampers for controlling the structural vibrations due to earthquake have witnessed considerable development in the past few decades. Also there are some studies on the energy absorption of thin-walled tubes due to impact load. Thin-walled tubes have a large deformation capacity and are suitable energy absorbers in the structure during an earthquake provided...

متن کامل

Microstructure - based hyperelastic models for closed - cell

For cellular bodies involving large elastic deformations, mesoscopic continuum models that take into account the interplay between the geometry and the microstructural responses of the constituents are developed, analysed and compared with finiteelement simulations of cellular structures with different architecture. For these models, constitutive restrictions for the physical plausibility of th...

متن کامل

Stress Analysis of Two-directional FGM Moderately Thick Constrained Circular Plates with Non-uniform Load and Substrate Stiffness Distributions

In the present paper, bending and stress analyses of two-directional functionally graded (FG) circular plates resting on non-uniform two-parameter foundations (Winkler-Pasternak foundations) are investigated using a first-order shear-deformation theory. To enhance the accuracy of the results, the transverse stress components are derived based on the three dimensional theory of elasticity. The s...

متن کامل

Sliding Friction Contact Stiffness Model of Involute Arc Cylindrical Gear Based on Fractal Theory

Gear’s normal contact stiffness played an important role in the mechanical equipment. In this paper, the M-B fractal model is modified and the contact surface coefficient is put forward to set up the fractal model, considering the influence of friction, which could be used to calculate accurately the involute arc cylindrical gears’ normal contact stiffness based on the fractal theory and Hertz ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011